On well-posedness of generalized Hall-magneto-hydrodynamics

نویسندگان

چکیده

We obtain local well-posedness result for the generalized Hall-magneto-hydrodynamics system in Besov spaces $${\dot{B}^{-(2\alpha _1-\gamma )}_{\infty , \infty }} \times {\dot{B}^{-(2\alpha _2-\beta }({{\mathbb {R}}^3})}$$ with suitable indexes $$\alpha _1, \alpha _2, \beta $$ and $$\gamma .$$ As a corollary, hyperdissipative electron magneto-hydrodynamics is globally well-posed _2-2)}}_{\infty {R}}^3})$$ small initial data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness for Hall-magnetohydrodynamics

We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resitive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions. Acknowledgements: The first and third authors wish to thank the hospitality of the Institut de Mathématiques de Toulouse, France, where this research has been car...

متن کامل

Quantum hydrodynamics: Well-posedness and asymptotics

In this talk, we consider the recent results on well-posedness and small asymptotic analysis on the quantum hydrodynamic model which takes the form of Euler-Poisson with dispersion.

متن کامل

Common fixed points of four maps using generalized weak contractivity and well-posedness

In this paper, we introduce the concept of generalized -contractivityof a pair of maps w.r.t. another pair. We establish a common fixed point result fortwo pairs of self-mappings, when one of these pairs is generalized -contractionw.r.t. the other and study the well-posedness of their fixed point problem. Inparticular, our fixed point result extends the main result of a recent paper ofQingnian ...

متن کامل

On the Ill/well-posedness and Nonlinear Instability of the Magneto-geostrophic Equations

We consider an active scalar equation that is motivated by a model for magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast, the critically diffusive equation is well-posed (cf. [15]). In this case we give an example of a steady state that is nonlinearly unstable, and hence produces a dynamo...

متن کامل

Well-posedness for a class of generalized Zakharov system

In this paper, we study the existence and uniqueness of the global smooth solution for the initial value problem of generalized Zakharov equations in dimension two. By means of a priori integral estimates and Galerkin method, we first construct the existence of global solution with some conditions. Furthermore, we prove that the global solution is unique. c ©2017 All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Angewandte Mathematik und Physik

سال: 2022

ISSN: ['1420-9039', '0044-2275']

DOI: https://doi.org/10.1007/s00033-022-01771-3